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k-resonance of open-ended carbon nanotubes
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An open-ended carbon nanotube or atubuleis a part of some regular hexagonal tessellation
of a cylinder. A tubuleT is said to bek-resonant if for everyk (or fewer) pairwise disjoint
hexagons, the subgraph obtained fromT by deleting all the vertices of these hexagons must
have a Kekule structure (perfect matching) or must be empty. The 1-resonant tubules can
be constructed by an approach provided in H. Zhang and F. Zhang, Discrete Appl. Math. 36
(1992) 291. In this paper, we give the construction method ofk(k � 3)-resonant tubules.
The lower bound of its Clar number ofk(k � 3)-resonant tubules is also given. Note that the
present paper does not consider the capped species.

1. Introduction

Iijima observed the multiwall carbon nanotube in 1991 [1]. Two years later, two
groups independently discovered the single-wall carbon nanotubes [2,3]. In 1996 Smal-
ley’s group synthesized the aligned single-wall nanotubes [4]. As point out by Smalley,
a carbon nanotube is a carbon molecule with the almost alien property of electrical con-
ductivity, and super-steel strength. It is expected that carbon nanotubes can be widely
used in many fields. Due to this reason, carbon nanotubes have attracted great attention
in different research communities such as chemistry physics and artificial materials. For
the details, see [5,6].

In general, a single-wall carbon nanotube has two hemispherical caps connected
by a carbon atoms skeleton of a tubular hydrocabon or the open-ended nanotube. In
fact, tubules (the graphs of open-end nanotubes) are the basis for many researches in
physics and chemistry. For example, the problem of recognizing the metallic carbon
nanotubes and semicondicting nanotubes has been shown to be depend on the size and
geometry of the tubule [6] (some more general criteria have been comprehensively ex-
plicated in [7] originally). On the other hand, though most nanotubes discussed in the
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literature have closed caps, open-ended tubules have also been reported [8–11]. Along
this line Sachs, Hansen and Zheng discussed the enumeration of the number of Kekule
structures (perfect matchings) of tubules. They provided an approach to consider their
asymptotic behavior [12]. This too has been comprehensively treated in [13]. Erkoc and
Turker [14] investigated the electronic structure of small tubules by using the AMI-RHF
semiempirical molecular orbital method.

This paper considers thek-resonant theory of tubules. The inspiration ofk-resonant
structure comes from Clar’s aromatic sextet theory [15–19] and the conjugated circuit
theory of Herndon and Randic [20–22]. In Clar’s theory, the mutually resonant sextets
(hexagons) play an important role in the definitions of Clar’s formula and the general-
ized Clar’s formula. In Randic’s theory, the conjugated hexagon (i.e., there is a Kekule
structureM such that the perimeter of the hexagon is anM-alternating cycle) has the
largest contribution to the resonant energy among all 4n + 2 conjugated circuits. Based
on this fact, one can define thek-resonant benzenoid systems and coronoid systems.
In [23], Gutman first proposed the concept of 1-resonant benzenoid system and raised
the problem of how to characterize them. This problem was solved by Zhang and Chen
in [24]. Later, it was generalized to coronoid system in [25] and planar bipartite graphs
in [26]. Zheng characterizedk(k � 2)-resonant benzenoid system and gave a systematic
method to construct allk(k � 3)-resonant benzenoid systems [27,28]. In [29], Chen and
Guo solved the same problem for coronoid systems and the result was extended by Lin
and Chen to multiple coronoid systems [30].

In this paper, we consider thek-resonant tubules. The paper is organized as follows:
the basic notations and terminologies are given in section 2. In section 3, we deal with the
1-resonant tubules and 2-resonant tubules. We point out that a linear algorithm is known
to check whether or not a tubule is 1-resonant, when we know one of its Kekule structure
of this tubule. In section 4, we give a procedure for the construction of 3-resonant
tubules. We also prove that if a tubule is 3-resonant, then it is alsok-resonant fork > 3.
A lower bound of Clar number of 3-resonant tubules is also given in section 4. Note that
thek-resonant tubules characterized in this paper are different from the nanotubes refer
to polyhex structures which extend a long way along the cylinder and the boundaries at
the two ends are caps (see [1–10]). We will discuss our results in section 5.

2. Basic concept

It is well known that any hexgonal tessellation cylinder can be consider as a strip of
regular hexagonal tessellation of the plane between two parellel straight lineL1 andL2,
where points of opposit (othogonal) positions onL1 andL2 are identified [5,6,12] (see
figure 1). Without loss of generality, we can assume thatL1 andL2 pass through the
lattice pointsO of hexagons. (In fact, we can take any straight line parallel to the axis
of the cylinder to beL1.) If we unrolled the cylinder, thenO and its oposite positionA
determine a vectorOA = Ch. Suppose that the vectorsa1 and a2 are shown as in
figure 1. Then one of them, say,a1, has the smaller angle betweenCh andai . The chiral
angleθ is defined as the angle between the vectorsCh anda1.
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Figure 1. A tubule is unrolled onto the plane. When we identifyO andA, andB andB ′, a tubule can be
constructed.OA defines the chiral vectorCn. The angle betweenCn anda1 is the chiral angleθ .

From the hexagonal symmetry of the lattice [5,6], 0� θ � 30◦. The two extreme
casesθ = 0◦ andθ = 30◦ (calledzigzagandarmchairhexagonally tessellated cylinders,
respectively) are of special interest.

As pointed out in [12], the natural counterpart of the tubular hydrocabon is its car-
bon atom skeleton which forms a (open-ended) tubule. Note that we will not distinguish
a tubule from its skeleton. Using the language of graph theory, a tubuleT is defined to
be a finite section of a hexagonally tessellated cylinder produced by two disjoint edge
cuts such that each edge ofT belongs to at least one hexagon ofT . Clearly, for each
edge cut, the line segments connecting the centers of two edges of the edge cut in a same
hexagon will surround the axis of the cylinder. In the following, we assume that a tubule
T is drawn in such a way that its axis is vertical. Denote the top and bottom perimeter
of T to bec1 andc2, respectively.

In the rest part of the section, we introduce Clar formulas (a set of Clar aromatic
sextets) for tubules. The concept was originally given by Clar in the study of benzenoid
hydrocarbons [15–19]. (For benzenoid hydrocarbons, its carbon atom skeleton graph is
a 2-connected planar graph whose every interior face is bounded by a regular hexagon
of side length 1. This graph is called thebenzenoid system.)

A Clar formula (a set of Clar aromatic sextets) for a tubule is a set of hexagons on
the tubule selected (by drawing circles) as follows:

(1) draw circles in disjoint hexagons;

(2) the remainder of the tubule obtained by deleting the vertices of the circled
hexagons must have a Kekule structure or must be empty;

(3) circles are drawn as many as possible subject to (1) and (2).

A set of selected hexagons satisfying rules (1) and (2) is called ageneralized Clar
formula. The number of selected hexagons in a Clar formula is called theClar number.
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Based on some experiments, Clar’s aromatic sextet theory claims that for two isometric
benzenoid hydrocabons, the one having a larger Clar number should be more stable. It
is an inevitable trend to extend Clar’s aromatic sextet theory to the study of tubules. The
extended theory can also be used to explain why the armchair carbon nanotube is more
stable than others.

3. 1-resonant and 2-resonant tubules

Any hexagonal tessellation of the cylinder is an infinite bipartite graph. As its
subgraph, a tubule is also a bipartite graph. Moreover, a tubule is also a planar graph
when we take the face surrounded byc1 or c2 to be infinite [12].

Definition 1. A tubule T is said to bek-resonant, if for every k (or fewer) pairwise
disjoint hexagons, the graph obtained from the tubule by deleting the vertices of the
hexagons has a Kekule structure or is empty.

In other words,T is k-resonant, iff anyk (or fewer) pairwise disjoint hexagons of
T form a generalized Clar formula. By definition, ifT is k-resonant, thenT is also
k′-resonant for anyk′ < k. This concept can be extended to planar graphs when
hexagons are replaced by interior faces.

Now we recall some basic concepts of matching theory [31]. A Kekule structure
of a molecular graphG corresponds to a perfect matching ofG. An edge of a graphG
is said to be allowed if it is in some perfect matching ofG and forbiden, otherwise. If an
edge is ineveryperfect matching ofG, then it is called afixed double bond. A connected
bipartite graphG is elementary, if each edge inG is allowed. For a graphG with perfect
matchings, a cyclec of G is nice if G− c has a perfect matching.

The following concepts and lemmas can be found in [26]. We first give the defini-
tion of theear decomposition. Let x be an edge. Joining its end vertices by a pathP1 of
odd length, we get the so-called “first ear”. We proceed inductively to build a sequence
of bipartite graphs as follows: ifGr−1 = x + P1 + P2 + · · · + Pr−1 has already been
constructed, add therth earPr (of odd length) by joining any two vertices with different
colors in the bipartite graphGr−1 such thatPr has no internal vertices in common with
the vertices ofGr−1. The decompositionGr = x +P1+P2+ · · · +Pr will be called an
(bipartite)ear decompositionof Gr .

Definition 2 [26]. An ear decomposition(G1,G2, . . . ,Gr = G) (equivalently,G =
x + P1 + P2 + · · · + Pr ) of a planar elementary bipartite graphG is called a reducible
face decomposition, ifG1 is the boundary of an interior face ofG and theith earPi is
exterior toGi−1 such thatPi and a part of the periphery ofGi−1 surround an interior face
of G for all 2 � i � r.

Theorem 3 [26]. LetG be a planar elementary bipartite graph other thanK2. ThenG
has a reducible face decomposition starting with the boundary of any interior face ofG.
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Corollary 4 [26]. LetG be a planar bipartite graph other thanK2. ThenG is elementary
if and only ifG has a reducible face decomposition.

When we begin to consider the tubule, the first thing to our mind is the coronoid
system which is the carbon atom skeleton graph of coronoid hydrocarbons. In fact, a
coronoid systemG can be obtained from a benzenoid system by deleting at least one
interior vertex and/or at least one interior edge such that each edge ofG belongs to at
least one hexagon ofG and a unique non-hexagon interior face emerges. Several papers
and two books are devoted to this topic [32]. It is natural to think that coronoid systems
and tubules have almost the same properties. In fact, it is not conjecturable and some
results are not valid simutaniously for these two types of graphs. We will find the first
example in this section.

The following general theorem can be used to recognize 1-resonant tubules.

Theorem 5 [26]. LetG be a planar bipartite graph with more than two vertices. Then
each face (including the infinite face) ofG is 1-resonant iffG is elementary.

Corollary 6. A tubuleT is 1-resonant iffT is elementary.

Proof. Let T be a 1-resonant tubule. Since each edgee of T is on the perimeter of a
hexagons andT is 1-resonant,T − s has a perfect matching ande is allowed. ThusT
is elementary. The inverse is clear by theorem 5. �

For the coronoid system, there is a stronger result: a coronoid systemG is
1-resonant iff the outer and inner perimeters ofG are nice cycles [25]. However, the
statement is not true for tubules. The counter-example is zigzag tubules with the zigzag
type of ends of figure 2(b). In fact, for this type of tubules all the edges which are paral-
lel to the axis of the zigzag tubule are not allowed (see figure 2(b)). Hence, it is not an
elementary graph. By theorem 6, it is not 1-resonant, though its two perimeters are nice
cycles. In general, whether or not a zigzag nanotube is 1-resonant depends on its ends
c1 andc2. Fortunately, we have a good algorithm to recognize the planar elementary
graph. If a perfect matching ofG [33] is known, the running time is linear. So we can
use corollary 4 efficiently to recognize the 1-resonant tubules.

As pointed out in [12], tubules are planar bipartite graphs. By corollary 6 and
theorem 3, it is easy to give a constructive procedure to construct 1-resonant tubules face
by face. We omit the details here.

As for the 2-resonant tubules, up to now, there is no simple procedure to recognize
them and the constructive procedure has not been found, either. It seems to be a very
challenging problem in the study of 2-resonant tubules as well as for benzenoid systems.

Now we will give an example of 2-resonant tubule (see figure 3). We claim that all
the armchair tubules are 2-resonant. Figure 3 shows that any pair of disjoint hexagons
are resonant. In other words, the graph obtained from the tubule by deleting the vertices
of each pair of disjoint hexagons has a Kekule structure.
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(a) (b)

Figure 2. Armchair tubule (a) and zigzag tubule (b).

Figure 3. Any pair of disjoint hexagons of the armchair tubule are resonant. Note that the dangling edges
with the same label are identified.

4. k(k � 3)-resonant tubules

Now we turn to thek(k � 3)-resonant tubules. Let us give an example of small
k(k � 3)-resonant tubules (see figure 4). We considerA3, the smallest armchair tubule,
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(a) (b) (c)

Figure 4. Three small tubules: (a)A3, (b) T 3 and (c)T 4. The edges or dangling edges with the same label
are identified.

Figure 5. A tubule formed by identifying two edges with labele6, in which e0, e1, . . . , e6 are chords of
type II, e∗ is a maximal chord of type I,e7 ande8 are chords of type I.

where the edges with the same label are overlayed. Note thatA3 has no disjoint hexagon
and each hexagon is resonant. ThusA3 is k(k � 1)-resonant. T 3 and T 4 are also
k(k � 1)-resonant tubules, where the edges with the same label are overlayed. In fact,
each hexagon and each pair of disjoint hexagons ofT 3 andT 4 are resonant, andT 3 and
T 4 have at most two disjoint hexagons.

An edge of a tubuleT is a chord if its two ends are on the outer-perimetersc1

and/orc2 of T but e /∈ c1 ∪ c2. A chorde of a tubuleT is of type II if one end is onc1

and the other is onc2. A chorde of a tubuleT is of type I if its both ends ofe are on the
same perimeterc1 or c2.

Given a chorde of type I,T is seperated bye into two parts. One is a tubule, say,
T (e). The other is a benzenoid system, say,B(e). The concept of a chord of a tubule is
similar to the concept of a chord of a coronoid system. As in the later case, a chorde∗
of type I ismaximalif for any chorde 
= e∗ of type I,B(e∗) is not the subgraph ofB(e)
(see figure 5).

From the result of [29, section 3], we can see that for ak(k � 3)-resonant coronoid
system there are at least two chords. But in our case, there are 3-resonant tubules having
no chord (T ′n andT 6 in figure 6) and there are 3-resonant tubules having exactly one
chord (T ′′n in figure 6). This fact shows the difference between the coronoid systems and
tubules again.

A tubule without a chord of type I is apure tubule. We now give the construction
method of 3-resonant pure tubules. If a pure tubule has more than one chord arranged
clockwise as follows:

e1, e2, . . . , et , t > 1,
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(a) (b) (c)

Figure 6. Three types of tubules formed by identifying the edges with the same label. (a)T ′n, n � 4, n is
even; (b)T ′′n , n � 2, n is even; (c)T 6. T ′n andT 6 have no chord,T ′′n has exactly one chorda.

(a) (b) (c) (d)

Figure 7. Building block of 3-resonant tubules{e1, e2, e3}, {e′1, e′2, e′3} and their subsets with two elements
are attachable combinations of a crown or a single hexagon.{e1, e2} is an attachable combination ofTn.

(a) A single hexagon; (b) a crown; (c)Tn, n � 1, n is odd; (d)Tn, n � 2, n is even.

denote the section between chordei andei+1 (inclusive ofei andei+1) by T (ei, ei+1)

wherei+1 is taken modulot . In fact, if we split the edgee1, e2, . . . , er , some benzenoid
systemsT (ei, ei+1) (i = 1,2, . . . , t) are obtained. We call them building blocks ofT .
For a tubule with chords of type I, we can easily split its chord in a similar way.

We will show that the benzenoid systems showing in figure 7 are all building blocks
of 3-resonant tubules.

For each building block, the set(s) of attachable edges are specified in figure 7.
For the single hexagon and crown, the six edges on the perimeter with two end vertices
of degree 2 are divided into two sets{e1, e2, e3} and {e′1, e′2, e′3}. We will see that in
the spliting of 3-resonant pure tubule, two or three edges in the same set are spliting
edges. We call them an attachable combination. ForTn, e1 ande2 form an attachable
combination. For example, in a crowne′1 and e3 are not an attachable combination.
The following lemma is valid for 3-resonant coronoid systems which is also true in the
case of 3-resonant tubule. The proof is the same, so we will omit its details (see [30,
lemma 2.1]).

Lemma 7. Let T be a 3-resonant tubule. Then

(1) T cannot have three consecutive vertices on its perimeter such that the first and
last ones are of degree 3 and the second one is of degree 2;

(2) T has no subgraph as shown in figure 8;

(3) any two internal hexagons ofT are disjoint;
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Figure 8. A forbiden subgraph of 3-resonant tubules.

(4) the vertices on the perimeter of any crown which is a subgraph ofT are on the
perimeter ofT .

Note that conclusion (5) of lemma 2.1 in [30] asserts that a coronoidG has no such
external hexagon that has exactly two parallel edges on the perimeter ofG. But this
fact is not true for tubules. In fact tubulesT 4 andT 6 are counterexamples (see figures 4
and 5).

Now we are in the position to prove the following theorem.

Theorem 8. Let T be a 3-resonant pure tubule. Then

(1) if T has no chord, thenT is T ′n, T 6 or T 4;

(2) if T has exact one chord, thenT is T ′′n or T 3;

(3) if T has more than one chord (of type II) arranged clockwise ase1, e2, . . . , en,
thenT can be splitted into sections:T (ei, ei+1), i = 1,2, . . . , n (modn), such
that each section is eitherTn, or a crown, or a hexagon, and the attachable
edgesei andei+1 of which constitute an attachable combination.

Proof. Taking a hexagons of T , we will show thats is contained in a subgraph of
T which is one ofT 3, T 4, T 6, T ′n, Tn, or a crown or a hexagon, and has exactly two
attachable edgesei andei+1 that constitute an attachable combination.

Case 1.None of the vertices ofs lies onc1 or c2. By lemma 7(4) all the vertices on the
outer perimeter of the crown containings as its internal hexagon are onc1 or c2. Thus,
at least one edge in the two sets{e1, e2, e3} and{e′1, e′2, e′3} is a chord ofT (saye1). It
is not difficulty to see that, for the 3-resonant pure tubules, exactly two edges in the two
sets{e1, e2, e3} and {e′1, e′2, e′3} are chords ofT . Now we will prove that if one ofei
(saye1) is a chord ofT , thene′i , i = 1,2,3, can not be a chord ofT . Otherwise, we
can find three hexagons ofT : the hexagons and the two hexagons ofT which do not
belong to the crown and contain the edgese1 ande′i , respectively. When we delete these
three hexagons fromT , an odd connected component is created, contradicting thatT is
3-resonant (see figure 7).

Case 2.Hexagons has exactly two vertices onc1 or onc2.
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Figure 9.T n, n � 4, formed by identifying the dangling edges with the same label.

Subcase 2.1.s is contained in a subgraph ofT which is aT ′n with n � 4 being
even. By lemma 7(2), there is no hexagon on the positions, for which each has a star. By
lemma 7(4), there is no hexagon on the positions, each of which has a double star. Thus
T is just aT ′n andT has no chord (see figure 6).

Subcase 2.2.s is contained in a subgraph ofT which is aT ′′n . ThenT is justT ′′n . In
fact, by the same discussion in the proof of subcase 2.1, we only need to show that there
is no hexagon ofT on the positions, where each of which has a star inT ′′n of figure 6.
This fact can be seen by lemma 7(1).

Subcase 2.3.In the other case,s is contained in a maximal subgraphTn of T in the
sense that no othern′ > n such thatTn′ is a subgraph ofG containingTn. By the proof
of subcase 2.1, we only need to consider the positions 1 and 2 (see figure 7). In fact,
there is no hexagon ofT on the position 1 (by lemma 7(1)). If there is a hexagon on
position 2, there must be a hexagon on position 3 (by lemma 7(1)). This fact contradicts
the maximality ofn. Thuse2 is either a chord ofT or an edge onc1 or c2. Analogously,
the same is true for edgee1. Furthermore, ife1 (e2) is onc1 or c2, thene2 (e1) must be
of type I, contradicting thatT is a pure tubule. Clearly the sectionT (e1, e2) is Tn ande1

ande2 are its attachment edges.

Case 3.Hexagons has exactly three vertices on the perimeter ofT . By lemma 7(1), it
is impossible.

Case 4.A hexagon has exactly four vertices onc1 or c2 of T .
Subcase 4.1.The four vertices onc1 or c2 are end vertices of two parallel edges

of s.
Subsubcase 4.1.1.s is contained in a subgraph ofT which is aT n, n � 4 (n is

even) (see figure 9).
By lemma 7(2), there is no hexagon ofT on the positions with a star. By

lemma 7(1), if there is a hexagon on a position with a double star, then each position
which has a double star has a hexagon ofT , contradicting the condition of subcase 4.1.
ThusT can only beT n, n � 4 (n is even). Whenn = 4,T 4 is 3-resonant, as point out at
the begining of this section. Whenn > 6, Tn is not 3-resonant, since we can find three
pairwise disjoint hexagonss1, s2 ands3 which are not resonant (see figure 9). Thus the
only remaining possibility isn = 6. It is not difficulty to check thatT 6 is 3-resonant.
Thuss is contained inT 6 or T 4.
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Figure 10. In case 4,S is the rightmost hexagon ofT n.

(a) (b) (c)

Figure 11. (a) subcase 4.2; (b) subcase 4.3; (c) case 5.

If s is contained in a maximal subgraph ofT which is aT n, n � 3. Clearly,s is in
aT 3.

Subsubcase 4.1.2.s is not contained in a subgraphT n of T . Then we may assume
that s is the rightmost one fulfiling the condition of case 4 in the sense thats′ does
not belong toT or s′ belongs toT but s5 or s6 does not (see figure 10). Similar to
subsubcase 4.1.1, none ofs1 ands2 belongs toT (by lemma 7(2)) and none ofs3 ands4
belongs toT (by lemma 7(1)). Ifs′ is not inT , thens is not resonant, a contradiction.
Hences′ must be inT . Sinces′′1 ands′′4 are resonant inT , at least one ofs5 ands6 belongs
to T . By lemma 1(1), they must both be inT , contradicting the selection ofs.

Subcase 4.2.s has exactly three consecutive edges on the perimeter ofT (see
figure 11(a)).

Subsubcase 4.2.1.Both s1 ands2 belong toT . If s3 belongs toT too, thens is in a
crown with the centers∗ and the conclusion valid by the discussion in case 1. Otherwise,
s3 does not belong toT . Thens∗ is a hexagon having exactly two vertices onc1 or c2.
By the discussion of case 2,s∗ and alsos is in a section which is one ofTn, T ′n, andT ′′n .

Subsubcase 4.2.2.At least one ofs1 ands2 (says1) does not belong toT . If both s4
ands5 are inT , then,s∗∗ is a hexagon ofT with two parallel edges which belong toc1

andc2, respectively. This reduces to subcase 4.1. By the discussion of subcase 4.1,s∗∗
(and alsos) is in T 4 or T 6. Note that, by lemma 7(1), it is impossible that exactly one of
s4 ands5 is in T . Thus, we need only to deal with the case whens4 ands5 are not inT .
In this case, a chord of type I ofT must exist, a contradiction.
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Subcase 4.3.Hexagons has exactly two non-parallel and non-incident edges on
c1 or c2 (see figure 11(b)). By lemma 7(2), there is no hexagon on the positions, where
each has a star. By lemma 7(1), there is no hexagon on the positions, where each has a
double star. If there is a hexagon ofT on one of the positions 1 and 2, thens′ or s′′ will
be a hexagon fulfilling the condition of subcase 4.2. By the discussion there,s′ (or s′′)
and therefores are contained in a section which is either aTn, or a crown, orT ′n, or T ′′n ,
or T 3, or T 4, or T 6. If there is no hexagon ofT on positions 1 and 2, it is clear that
s is contained in aT2. Thene1 ande2 must be chords of type II inT which forms a
attachable combination.

Case 5.Hexagons has five vertices onc1 or c2. If there is no hexagon ofT on the
position 1 (see figure 11(c)), then by lemma 7(1), there is no hexagon only on one of
the positions 2, 3, 4 and 5. If there are two hexagons ofT on the positions 2 and 3
(4 and 5) then there is no hexagon on the position of 5 (3) (by lemma 7(2)) and 4 (2)
(by lemma 7(1)). Thens∗∗ (s∗) is not resonant, again a contradiction. ThusT has only
three hexagons. This means thatT is not a tubule, a contradiction. Hence, there must
be a hexagon on position 1. Nows∗ is a hexagon with at most four vertices onc1 or c2

ands ands∗ are in a same section. Whens∗ has exactly two vertices onc1 or c2, by the
discussion in the previous cases,s∗ and therefores are contained in aTn, n > 1. But
the factn > 1 implies thatT has a chord of type I, contradicting the fact thatT is pure.
Whens∗ has exactly four vertices onc1 or c2, by the discussion of subcases 4.2 and 4.3,
our conclusion is valid.

Case 6.Hexagons has six vertices onc1 or c2. It is not difficulty to see thats has two
attachable edges which constitute an attachable conbination ofs.

Now we complete our proof. �

In general case, a 3-resonant tubuleT may have chords of type I. LetT be a tubule
with maximal chords of type I:e∗1, e

∗
2, . . . , e

∗
n. It is clear thatT̂ = T (e∗1)∩ T (e∗2)∩ · · · ∩

T (e∗n) is a pure tubule andB(e∗i ) is a 3-resonant benzenoid system. Thus, we can give a
construction method of 3-resonant tubules based on 3-resonant benzenoid systems and
3-resonant pure tubules.

Now we give a construction method of 3-resonant pure tubule with at least two
chords. LetA0 be the set of crown, hexagon andTn (n = 2,3, . . .) with attachable edges
forming an attachable combination.

Construction procedure.

(1) Benzenoid systemBn with attachable edges are defined recursively as follows.
Let us choose a benzenoid systemH with attachable edges fromA0 and define
H to beB1. H is also defined to be the end section. IfBn−1 with end section
and its attachable edges is defined, choosingHn from A0. Bn can be obtained
from Bn−1 by identifying an attachable edge ofHn and an attachable edge of
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(a)

(b)

Figure 12. An illustration of the construction procedure (the last step (see (b)) is to identifya1 anda2).

the end sectionHn−1 of Bn−1. We define the end sections ofBn to beH1 and
Hn and attachable edges ofBn to be attachable edges ofH1 andHn lying on
the perimeter ofBn.

(2) If in Bn there are two attachable edgee1 anden belonging toH1 andHn, re-
spectively, ande1 and e2 are parallel, when we identifye1 and e2, so that a
3-resonant pure tubule are obtained (see figure 12).

The following simple lemma can be found in [29].

Lemma 9. Let T −n (T −−n ) denote the hexagonal system obtained fromTn by deleting
one (two) attachable edge(s) together with its end vertices. LetC denote the crown, and
C− (C−−) are obtained fromC by deleting one (two) edge(s) together with their end
vertices which form an attachable combination ofC. ThenTn, T −−n , T −n , C, C−, C−−
arek(k � 3)-resonant.

Theorem 10. T is ak(k � 3)-resonant pure tubule with at least two chords of type II,
iff T can be produced by the constructing procedure.
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Proof. Let T be produced by the constructing procedure. ThenT is a pure tubule
with at least two chords of type II:e1, e2, . . . , et such that each sectionT (ei, ei+1),
i = 1,2, . . . , t (modt), is either aTn, or a crown, or a hexagon, which has ex-
actly two attachable edgesei and ei+1 constituting an attachable combination. Let
K = {s1, s2, . . . , sk} be a set of pairwise disjoint hexagons ofT . Ki = K ∩ T (ei, ei+1),
i = 1,2, . . . t .

For each sectionT (ei, ei+1), i = 1,2, . . . , t , if ei (ei+1) belongs to a hexagon
in K not in the section, then delete end vertices ofei (ei+1). If ei+1 does not belong to
any hexagon inK, then delete end vertices ofei+1. The resultant graph is denoted by
T ′(ei, ei+1). It is clear thatT ′(ei, ei+1) is either aTn(C) or aT −n (C−) or aT −−n (C−−),
or an edge or a 3-path, and any twoT ′(ei, ei+1) are disjoint, and

⋃
T ′(ei, ei+1) covers

all vertices. By lemma 9,T ′(ei, ei+1) is k(k � 3)-resonant. HenceKi are resonant in
theT ′(ei, ei+1). ThusK is resonant inT andT is k(k � 3)-resonant.

Conversly, if a pure tubuleT is k(k � 3)-resonant, thenT is 3-resonant. By
theorem 8, if we split a chorde, we obtain a benzenoid system with the formBn and
the two edges obtained frome need to be parallel. ThusT can be constructed by our
procedure. �

Theorem 11. A pure 3-resonant tubule must bek(k � 3)-resonant.

Proof. If T has at least two chord,T can be produced by the construction procedure.
ThusT fulfils the condition of theorem 10 andT is k(k � 3)-resonant. Now we need to
show thatT ′n andT ′′n (n � 4, n is even) arek(k � 3)-resonant.

(1) Taking a setK of disjoint hexagons ofT ′n. If there is a hexagons1 in K con-
taining exactly two vertices onc1 or c2 (see figure 6), then the graphs consisting of all
the hexagons ofT ′n − s is isomorphic to aTn−3. One can see that, these graphs are
k(k � 3)-resonant (see also [28]). ThusK is resonant inT ′n. On the other hand, all
hexagons ofT having exactly four vertices onc1 or c2 are resonant. Thus, if all the
hexagons inK have exactly four vertices onc1 or c2, they are also resonant. Therefore,
T ′n is k(k � 3)-resonant.

(2) Taking a set of disjoint hexagonsK of T ′′n . If a hexagons1 in K contains the
chord ofT ′′n (see figure 6), then the graph consisting of all the hexagons ofT ′′n − s1 is
k(k � 3)-resonant (see also [28]). If there is a hexagons3 in K containing exactly two
vertices onc1 or c2, then clearly the graph consisting of the all the hexagons ofT ′′n −s3 is
k(k � 3)-resonant (see also [28]). ThusK is resonant inT ′′n . On the other hand, clearly
all hexagons ofT having at least four vertices onc1 or c2 are resonant. Thus, if all the
hexagons inK have at least four vertices onc1 or c2, they are also resonant. Therefore
T ′′n − s1 is k(k � 3)-resonant.

For the cases ofT 3, T 4 andT 6, we can check them straightforwardly. �

A parallel result in benzenoid systems is the following.

Theorem 12 [28]. A 3-resonant benzenoid system must bek(k � 3)-resonant.
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Figure 13. A Clar formula of a crown and twoTn’s.

In general, we have

Theorem 13. Let T be a tubule with chord of type I,e′1, e
′
2, . . . , e

′
m be maximal chords

of type I. ThenT is k(k � 3)-resonant, iffB(e′i), i = 1,2, . . . , m, is ak(k � 3)-resonant
benzenoid system and̂T = T (e′1) ∩ T (e′2) ∩ · · · ∩ T (e′n) is a k(k � 3)-resonant pure
tubule.

Proof. The proof is similar to that of theorem 10. We omit its details. �

By theorems 11–13, we have

Corollary 14. A 3-resonant tubule must bek(k � 3)-resonant.

Fork(k � 3)-resonant tubules, a trivial upper bound of Clar number isn/6, where
n is the number of vertices of the tubule. This upper bound is reached byT ′n, since all
the hexagons ofT ′n with exactly four vertices on the perimeter ofT ′n form a Clar formula
of T ′n which hasn/6 hexagons. Similarly, the Clar number ofT ′′n is �n/6�.

The lower bound for the Clar number of thek(k � 3)-resonant tubules isn/8,
wheren is the number of vertices of the tubules.

The fact is based on the following two observations and our construction procedure.

(1) For the crown andTn, we have a Clar formulaK in which a set of attachable
combinations do not belong to any hexagon inK (see figure 13).

(2) Deleting all the sections isomorphic toTn and crown, we obtain some chains
of hexagons. Any centers of any three consecutive hexagons of the chain are
not on a straight line.

We can also check that the Clar number ofT 3, T 4, T 6 andA3 is 2, 2, 3 and 1,
respectively.

We omit the details of their proof.

5. Conclusion remark

In the experimental observation of carbon nanotubes, all the molcules have a large
size and two caps [1–10]. But how about the nanotube with small size? This paper
characterizes some open-ended tubules which are more stable from Clar’s point of view.
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For example,T ′n andT ′′n have the maximal Clar numbersn/6 and�n/6�, respectively,
wheren is the number of carbon atoms. The tubulesT 4 andT 6 have nice resonant
property. We think that the corresponding tubular hydrocarbons are good candidates for
synthesis, and the rolling up of multiple zigzag benzenoids or thin prolate rectanglar
benzenoids is an efficient way to theoretically construct them. As forA3 andT3, since
the curvature is large, it may be difficult to synthesize them.
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