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An open-ended carbon nanotube dululeis a part of some regular hexagonal tessellation
of a cylinder. A tubuleT is said to bek-resonant if for every (or fewer) pairwise disjoint
hexagons, the subgraph obtained frénby deleting all the vertices of these hexagons must
have a Kekule structure (perfect matching) or must be empty. The 1-resonant tubules can
be constructed by an approach provided in H. Zhang and F. Zhang, Discrete Appl. Math. 36
(1992) 291. In this paper, we give the construction method(bf> 3)-resonant tubules.
The lower bound of its Clar number &tk > 3)-resonant tubules is also given. Note that the
present paper does not consider the capped species.

1. Introduction

lijima observed the multiwall carbon nanotube in 1991 [1]. Two years later, two
groups independently discovered the single-wall carbon nanotubes [2,3]. In 1996 Smal-
ley’s group synthesized the aligned single-wall nanotubes [4]. As point out by Smalley,

a carbon nanotube is a carbon molecule with the almost alien property of electrical con-
ductivity, and super-steel strength. It is expected that carbon nanotubes can be widely
used in many fields. Due to this reason, carbon nanotubes have attracted great attention
in different research communities such as chemistry physics and artificial materials. For
the details, see [5,6].

In general, a single-wall carbon nanotube has two hemispherical caps connected
by a carbon atoms skeleton of a tubular hydrocabon or the open-ended nanotube. In
fact, tubules (the graphs of open-end nanotubes) are the basis for many researches in
physics and chemistry. For example, the problem of recognizing the metallic carbon
nanotubes and semicondicting nanotubes has been shown to be depend on the size and
geometry of the tubule [6] (some more general criteria have been comprehensively ex-
plicated in [7] originally). On the other hand, though most nanotubes discussed in the
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literature have closed caps, open-ended tubules have also been reported [8-11]. Along
this line Sachs, Hansen and Zheng discussed the enumeration of the number of Kekule
structures (perfect matchings) of tubules. They provided an approach to consider their
asymptotic behavior [12]. This too has been comprehensively treated in [13]. Erkoc and
Turker [14] investigated the electronic structure of small tubules by using the AMI-RHF
semiempirical molecular orbital method.

This paper considers titeresonant theory of tubules. The inspiratiorkeesonant
structure comes from Clar's aromatic sextet theory [15-19] and the conjugated circuit
theory of Herndon and Randic [20-22]. In Clar’s theory, the mutually resonant sextets
(hexagons) play an important role in the definitions of Clar’s formula and the general-
ized Clar's formula. In Randic’s theory, the conjugated hexagon (i.e., there is a Kekule
structureM such that the perimeter of the hexagon isMralternating cycle) has the
largest contribution to the resonant energy amongral-42 conjugated circuits. Based
on this fact, one can define thteresonant benzenoid systems and coronoid systems.
In [23], Gutman first proposed the concept of 1-resonant benzenoid system and raised
the problem of how to characterize them. This problem was solved by Zhang and Chen
in [24]. Later, it was generalized to coronoid system in [25] and planar bipartite graphs
in [26]. Zheng characterizeldk > 2)-resonant benzenoid system and gave a systematic
method to construct ali(k > 3)-resonant benzenoid systems [27,28]. In [29], Chen and
Guo solved the same problem for coronoid systems and the result was extended by Lin
and Chen to multiple coronoid systems [30].

In this paper, we consider tliteresonant tubules. The paper is organized as follows:
the basic notations and terminologies are given in section 2. In section 3, we deal with the
1-resonant tubules and 2-resonant tubules. We point out that a linear algorithm is known
to check whether or not a tubule is 1-resonant, when we know one of its Kekule structure
of this tubule. In section 4, we give a procedure for the construction of 3-resonant
tubules. We also prove that if a tubule is 3-resonant, then it iskalesonant fok > 3.

A lower bound of Clar number of 3-resonant tubules is also given in section 4. Note that
the k-resonant tubules characterized in this paper are different from the nanotubes refer
to polyhex structures which extend a long way along the cylinder and the boundaries at
the two ends are caps (see [1-10]). We will discuss our results in section 5.

2. Basic concept

Itis well known that any hexgonal tessellation cylinder can be consider as a strip of
regular hexagonal tessellation of the plane between two parellel straighit;lised L,
where points of opposit (othogonal) positions bnand L, are identified [5,6,12] (see
figure 1). Without loss of generality, we can assume fhaand L, pass through the
lattice pointsO of hexagons. (In fact, we can take any straight line parallel to the axis
of the cylinder to be.,.) If we unrolled the cylinder, the® and its oposite positiod
determine a vectoDA = C,. Suppose that the vectorg anda, are shown as in
figure 1. Then one of them, say, has the smaller angle betwe€p anda;. The chiral
angled is defined as the angle between the vect@randa;.
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Figure 1. A tubule is unrolled onto the plane. When we idenfifyand A, and B and B’, a tubule can be
constructedO A defines the chiral vectaf,. The angle betwee@, anda is the chiral anglé.

From the hexagonal symmetry of the lattice [5,6Kk® < 30°. The two extreme
case® = 0° andd = 30 (calledzigzagandarmchairhexagonally tessellated cylinders,
respectively) are of special interest.

As pointed out in [12], the natural counterpart of the tubular hydrocabon is its car-
bon atom skeleton which forms a (open-ended) tubule. Note that we will not distinguish
a tubule from its skeleton. Using the language of graph theory, a tibigalefined to
be a finite section of a hexagonally tessellated cylinder produced by two disjoint edge
cuts such that each edge Bfbelongs to at least one hexagon7of Clearly, for each
edge cut, the line segments connecting the centers of two edges of the edge cutin a same
hexagon will surround the axis of the cylinder. In the following, we assume that a tubule
T is drawn in such a way that its axis is vertical. Denote the top and bottom perimeter
of T to bec; andc,, respectively.

In the rest part of the section, we introduce Clar formulas (a set of Clar aromatic
sextets) for tubules. The concept was originally given by Clar in the study of benzenoid
hydrocarbons [15-19]. (For benzenoid hydrocarbons, its carbon atom skeleton graph is
a 2-connected planar graph whose every interior face is bounded by a regular hexagon
of side length 1. This graph is called thenzenoid systejn

A Clar formula(a set of Clar aromatic sextets) for a tubule is a set of hexagons on
the tubule selected (by drawing circles) as follows:

(1) draw circles in disjoint hexagons;

(2) the remainder of the tubule obtained by deleting the vertices of the circled
hexagons must have a Kekule structure or must be empty;

(3) circles are drawn as many as possible subject to (1) and (2).

A set of selected hexagons satisfying rules (1) and (2) is calgharalized Clar
formula The number of selected hexagons in a Clar formula is calle€kwenumber
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Based on some experiments, Clar's aromatic sextet theory claims that for two isometric
benzenoid hydrocabons, the one having a larger Clar number should be more stable. It
is an inevitable trend to extend Clar’s aromatic sextet theory to the study of tubules. The
extended theory can also be used to explain why the armchair carbon nanotube is more
stable than others.

3. l-resonant and 2-resonant tubules

Any hexagonal tessellation of the cylinder is an infinite bipartite graph. As its
subgraph, a tubule is also a bipartite graph. Moreover, a tubule is also a planar graph
when we take the face surroundeddyyor ¢, to be infinite [12].

Definition 1. A tubule T is said to bek-resonant if for every k (or fewer) pairwise
disjoint hexagons, the graph obtained from the tubule by deleting the vertices of the
hexagons has a Kekule structure or is empty.

In other words T is k-resonant, iff any (or fewer) pairwise disjoint hexagons of
T form a generalized Clar formula. By definition, 1f is k-resonant, therT is also
k’-resonant for ank’ < k. This concept can be extended to planar graphs when
hexagons are replaced by interior faces.

Now we recall some basic concepts of matching theory [31]. A Kekule structure
of a molecular grapl&; corresponds to a perfect matching@®@f An edge of a grapld
is said to be allowed if it is in some perfect matchingiband forbiden, otherwise. If an
edge is ireveryperfect matching o€, then it is called dixed double bondA connected
bipartite graphG is elementaryif each edge irG is allowed. For a graply with perfect
matchings, a cycle of G is niceif G — ¢ has a perfect matching.

The following concepts and lemmas can be found in [26]. We first give the defini-
tion of theear decompositionLet x be an edge. Joining its end vertices by a ptlof
odd length, we get the so-called “first ear”. We proceed inductively to build a sequence
of bipartite graphs as follows: iff,_; = x + P1 + P, + --- + P._; has already been
constructed, add theh earP, (of odd length) by joining any two vertices with different
colors in the bipartite grapty, _; such thatP, has no internal vertices in common with
the vertices of5,_;. The decompositios, = x + P; + P>+ - - - + P, will be called an
(bipartite)ear decompositionf G.,.

Definition 2 [26]. An ear decompositioliG1, Go, ..., G, = G) (equivalently,G =
x+ P+ P+ --- 4+ P,) of a planar elementary bipartite graghis called a reducible
face decomposition, if7; is the boundary of an interior face 6f and theith earP; is
exterior toG;_; such thatP; and a part of the periphery 6f;_, surround an interior face
of Gforall2<i <r.

Theorem 3 [26]. Let G be a planar elementary bipartite graph other thkan ThenG
has a reducible face decomposition starting with the boundary of any interior fate of
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Corollary 4 [26]. LetG be a planar bipartite graph other thEp. ThenG is elementary
if and only if G has a reducible face decomposition.

When we begin to consider the tubule, the first thing to our mind is the coronoid
system which is the carbon atom skeleton graph of coronoid hydrocarbons. In fact, a
coronoid systenG can be obtained from a benzenoid system by deleting at least one
interior vertex and/or at least one interior edge such that each edgebefongs to at
least one hexagon @f and a unique non-hexagon interior face emerges. Several papers
and two books are devoted to this topic [32]. It is natural to think that coronoid systems
and tubules have almost the same properties. In fact, it is not conjecturable and some
results are not valid simutaniously for these two types of graphs. We will find the first
example in this section.

The following general theorem can be used to recognize 1-resonant tubules.

Theorem 5 [26]. Let G be a planar bipartite graph with more than two vertices. Then
each face (including the infinite face) 6fis 1-resonant ifiG is elementary.

Corollary 6. AtubuleT is 1-resonant iffl" is elementary.

Proof. LetT be a 1-resonant tubule. Since each ed@é T is on the perimeter of a
hexagons andT is 1-resonant]’ — s has a perfect matching ards allowed. Thusr"
is elementary. The inverse is clear by theorem 5. O

For the coronoid system, there is a stronger result: a coronoid syStém
1-resonant iff the outer and inner perimetersGbfire nice cycles [25]. However, the
statement is not true for tubules. The counter-example is zigzag tubules with the zigzag
type of ends of figure 2(b). In fact, for this type of tubules all the edges which are paral-
lel to the axis of the zigzag tubule are not allowed (see figure 2(b)). Hence, it is not an
elementary graph. By theorem 6, it is not 1-resonant, though its two perimeters are nice
cycles. In general, whether or not a zigzag nanotube is 1-resonant depends on its ends
c1 andcy,. Fortunately, we have a good algorithm to recognize the planar elementary
graph. If a perfect matching @ [33] is known, the running time is linear. So we can
use corollary 4 efficiently to recognize the 1-resonant tubules.

As pointed out in [12], tubules are planar bipartite graphs. By corollary 6 and
theorem 3, it is easy to give a constructive procedure to construct 1-resonant tubules face
by face. We omit the details here.

As for the 2-resonant tubules, up to now, there is no simple procedure to recognize
them and the constructive procedure has not been found, either. It seems to be a very
challenging problem in the study of 2-resonant tubules as well as for benzenoid systems.

Now we will give an example of 2-resonant tubule (see figure 3). We claim that all
the armchair tubules are 2-resonant. Figure 3 shows that any pair of disjoint hexagons
are resonant. In other words, the graph obtained from the tubule by deleting the vertices
of each pair of disjoint hexagons has a Kekule structure.
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(b)

Figure 3. Any pair of disjoint hexagons of the armchair tubule are resonant. Note that the dangling edges
with the same label are identified.

4,  k(k > 3)-resonant tubules

Now we turn to thek(k > 3)-resonant tubules. Let us give an example of small
k(k > 3)-resonant tubules (see figure 4). We considgrthe smallest armchair tubule,
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Figure 4. Three small tubules: (&), (b) 73 and (c)T 4. The edges or dangling edges with the same label
are identified.

Figure 5. A tubule formed by identifying two edges with lalgl] in whicheg, eq, . . ., eg are chords of
type Il, ¢* is a maximal chord of type k7 andeg are chords of type I.

where the edges with the same label are overlayed. Notegtas no disjoint hexagon

and each hexagon is resonant. Thusis k(k > 1)-resonant. T3 and T4 are also

k(k > 1)-resonant tubules, where the edges with the same label are overlayed. In fact,
each hexagon and each pair of disjoint hexagoriB;adndT , are resonant, anfl; and

T 4 have at most two disjoint hexagons.

An edge of a tubulel’ is achord if its two ends are on the outer-perimetefs
and/orc, of T bute ¢ ¢ U c,. A chorde of a tubuleT is of type Il if one end is orey
and the other is om,. A chorde of a tubuleT is of type lif its both ends ok are on the
same perimeter; or c,.

Given a chorck of type I, T is seperated by into two parts. One is a tubule, say,

T (e). The other is a benzenoid system, sB). The concept of a chord of a tubule is
similar to the concept of a chord of a coronoid system. As in the later case, a<hord
of type | ismaximalif for any chorde # ¢* of type |, B(e*) is not the subgraph a®(e)
(see figure 5).

From the result of [29, section 3], we can see that fbka> 3)-resonant coronoid
system there are at least two chords. But in our case, there are 3-resonant tubules having
no chord { and T in figure 6) and there are 3-resonant tubules having exactly one
chord (" in figure 6). This fact shows the difference between the coronoid systems and
tubules again.

A tubule without a chord of type | is puretubule. We now give the construction
method of 3-resonant pure tubules. If a pure tubule has more than one chord arranged
clockwise as follows:

e, e0,...,¢, t>1
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Figure 6. Three types of tubules formed by identifying the edges with the same lab&}., a}> 4, n is
even; (b)7,/,n > 2,nis even; (c)Tg. T, andT g have no chord7,’ has exactly one choral

1 2 3 n—1 n

(%)

(d)

Figure 7. Building block of 3-resonant tubulgs, ¢, e3}, {e’l, e’z, 3’3} and their subsets with two elements
are attachable combinations of a crown or a single hexa@®n.e,} is an attachable combination @ .
(a) A single hexagon; (b) a crown; (&), n > 1,nis odd; (d)T;;,n > 2,n is even.

denote the section between cherdande; 1 (inclusive ofe; ande; 1) by T (e;, e;11)
wherei 41 is taken module. In fact, if we split the edgey, es, . . ., ¢,, Some benzenoid
systemsT (e;, e;11) (i = 1,2,...,¢) are obtained. We call them building blocks ©f
For a tubule with chords of type |, we can easily split its chord in a similar way.

We will show that the benzenoid systems showing in figure 7 are all building blocks
of 3-resonant tubules.

For each building block, the set(s) of attachable edges are specified in figure 7.
For the single hexagon and crown, the six edges on the perimeter with two end vertices
of degree 2 are divided into two sefis;, e, e3} and {ey, €5, e5}. We will see that in
the spliting of 3-resonant pure tubule, two or three edges in the same set are spliting
edges. We call them an attachable combination. T;oe; ande, form an attachable
combination. For example, in a crowny and ez are not an attachable combination.
The following lemma is valid for 3-resonant coronoid systems which is also true in the
case of 3-resonant tubule. The proof is the same, so we will omit its details (see [30,
lemma 2.1]).

Lemma7. LetT be a 3-resonant tubule. Then

(1) T cannot have three consecutive vertices on its perimeter such that the first and
last ones are of degree 3 and the second one is of degree 2;

(2) T has no subgraph as shown in figure 8;

(3) any two internal hexagons af are disjoint;
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Figure 8. A forbiden subgraph of 3-resonant tubules.

(4) the vertices on the perimeter of any crown which is a subgrafthase on the
perimeter ofT .

Note that conclusion (5) of lemma 2.1 in [30] asserts that a coraofidids no such
external hexagon that has exactly two parallel edges on the perimefer 8ut this
fact is not true for tubules. In fact tubul@s andTg are counterexamples (see figures 4
and 5).

Now we are in the position to prove the following theorem.

Theorem 8. Let T be a 3-resonant pure tubule. Then
(1) if T has no chord, thei is T/, T¢ Or T 4;
(2) if T has exact one chord, théhis 7" or T'3;

(3) if T has more than one chord (of type Il) arranged clockwise a5, ..., e,,
thenT can be splitted into sectiong(e;, ¢;11),i = 1,2, ..., n (modn), such
that each section is eithdf,, or a crown, or a hexagon, and the attachable
edges; ande;, 1 of which constitute an attachable combination.

Proof. Taking a hexagon of 7', we will show thats is contained in a subgraph of
T which is one ofT's, T4, T, T,, T,, Or a crown or a hexagon, and has exactly two
attachable edges ande; ; that constitute an attachable combination.

Case 1.None of the vertices of lies onc; or ¢,. By lemma 7(4) all the vertices on the
outer perimeter of the crown containingas its internal hexagon are onor c,. Thus,

at least one edge in the two sgts, e, e3} and{e], €5, e5} is a chord ofT" (sayey). It

is not difficulty to see that, for the 3-resonant pure tubules, exactly two edges in the two
sets{eq, eo, e3} and{ey, €5, e5} are chords off. Now we will prove that if one ok;
(saye;) is a chord ofT, thene, i = 1,2, 3, can not be a chord df. Otherwise, we

can find three hexagons @f. the hexagon and the two hexagons @f which do not
belong to the crown and contain the edgeande;, respectively. When we delete these
three hexagons frorfi, an odd connected component is created, contradicting/thet
3-resonant (see figure 7).

Case 2.Hexagons has exactly two vertices an or onc,.
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1 2 3 o 2n-1 2n

Figure 9.7, n > 4, formed by identifying the dangling edges with the same label.

Subcase 2.1s is contained in a subgraph @f which is a7, with n > 4 being
even. By lemma 7(2), there is no hexagon on the positions, for which each has a star. By
lemma 7(4), there is no hexagon on the positions, each of which has a double star. Thus
T isjust a7, andT has no chord (see figure 6).

Subcase 2.2 is contained in a subgraph ®fwhich is a7,’. ThenT is just7,’. In
fact, by the same discussion in the proof of subcase 2.1, we only need to show that there
is no hexagon of” on the positions, where each of which has a sté&fF, irof figure 6.
This fact can be seen by lemma 7(1).

Subcase 2.3n the other case, is contained in a maximal subgra@h of 7 in the
sense that no other > n such that7,, is a subgraph o; containing7,. By the proof
of subcase 2.1, we only need to consider the positions 1 and 2 (see figure 7). In fact,
there is no hexagon df on the position 1 (by lemma 7(1)). If there is a hexagon on
position 2, there must be a hexagon on position 3 (by lemma 7(1)). This fact contradicts
the maximality ofn. Thuse; is either a chord of" or an edge om, or c,. Analogously,
the same is true for edgg. Furthermore, if; (e;) is oncy or ¢y, thene; (e1) must be
of type I, contradicting thal is a pure tubule. Clearly the secti@ie, ¢2) is T, ande;
ande; are its attachment edges.

Case 3.Hexagons has exactly three vertices on the perimetef’oBy lemma 7(1), it
is impossible.

Case 4.A hexagon has exactly four vertices onor ¢, of T'.

Subcase 4.1The four vertices om; or ¢, are end vertices of two parallel edges
of s.

Subsubcase 4.1.%. is contained in a subgraph @f which is a7,,n > 4 (n is
even) (see figure 9).

By lemma 7(2), there is no hexagon @f on the positions with a star. By
lemma 7(1), if there is a hexagon on a position with a double star, then each position
which has a double star has a hexagoi pEontradicting the condition of subcase 4.1.
ThusT can only ber,,n >4 (n is even). Whem = 4,T,is 3-resonant, as point out at
the begining of this section. When> 6, T,, is not 3-resonant, since we can find three
pairwise disjoint hexagons, s, andss which are not resonant (see figure 9). Thus the
only remaining possibility is: = 6. It is not difficulty to check thaf's is 3-resonant.
Thuss is contained irl'g or T 4.



F. Zhang and L. Wang#-resonance of open-ended carbon nanotubes 97

Figure 11. (a) subcase?} (b) subcase.8; (c) case 5.

If s is contained in a maximal subgraph®fwhich is al,, n <3. Clearly,s isin

arTs.
Subsubcase 4.1.2.is not contained in a subgragh, of 7. Then we may assume
that s is the rightmost one fulfiling the condition of case 4 in the sense shdbes

not belong toT or s’ belongs toT' but ss or s does not (see figure 10). Similar to
subsubcase 4.1.1, nonesefands, belongs tal' (by lemma 7(2)) and none 6% ands,
belongs tor' (by lemma 7(1)). Ifs’ is not in T, thens is not resonant, a contradiction.
Hences’ must be inT". Sinces] ands, are resonant iff, at least one afs andss belongs

to 7. By lemma 1(1), they must both be i, contradicting the selection of

Subcase 4.2.s has exactly three consecutive edges on the perimeté&r @lee
figure 11(a)).

Subsubcase 4.2.Both s; ands, belong toT. If s3 belongs torl’ too, thens is in a
crown with the centes* and the conclusion valid by the discussion in case 1. Otherwise,
s3 does not belong t@. Thens* is a hexagon having exactly two vertices @nor c,.

By the discussion of case 2, and alsas is in a section which is one df,, 7/, and7,’.

Subsubcase 4.2.2t least one of; ands, (says;) does not belong t@'. If both s,
andss are inT, then,s** is a hexagon of” with two parallel edges which belong te
andc,, respectively. This reduces to subcase 4.1. By the discussion of subcas® 4.1,
(and alsw) is in T4 or Ts. Note that, by lemma 7(1), it is impossible that exactly one of
s4 andss is in T. Thus, we need only to deal with the case whgandss are not inT'.

In this case, a chord of type | Gf must exist, a contradiction.



98 F. Zhang and L. Wang¥k-resonance of open-ended carbon nanotubes

Subcase 4.3Hexagons has exactly two non-parallel and non-incident edges on
c1 Or ¢, (see figure 11(b)). By lemma 7(2), there is no hexagon on the positions, where
each has a star. By lemma 7(1), there is no hexagon on the positions, where each has a
double star. If there is a hexagonBfon one of the positions 1 and 2, theror s” will
be a hexagon fulfilling the condition of subcase 4.2. By the discussion #idia,s”)
and therefore are contained in a section which is eithef,aor a crown, o7, or 7,/
or T3, or T4, or Tg. If there is no hexagon of on positions 1 and 2, it is clear that
s is contained in d>. Thene; ande, must be chords of type Il il which forms a
attachable combination.

Case 5.Hexagons has five vertices om; or c,. If there is no hexagon of on the
position 1 (see figure 11(c)), then by lemma 7(1), there is no hexagon only on one of
the positions 2, 3, 4 and 5. If there are two hexagon§ afn the positions 2 and 3

(4 and 5) then there is no hexagon on the position of 5 (3) (by lemma 7(2)) and 4 (2)
(by lemma 7(1)). Ther** (s*) is not resonant, again a contradiction. THusas only
three hexagons. This means tffats not a tubule, a contradiction. Hence, there must
be a hexagon on position 1. NaW is a hexagon with at most four vertices onor ¢,

ands ands* are in a same section. Whehhas exactly two vertices an or c¢;, by the
discussion in the previous case$,and therefore are contained in &,, n > 1. But

the factn > 1 implies that" has a chord of type |, contradicting the fact tiais pure.
Whens* has exactly four vertices an or c¢;, by the discussion of subcases 4.2 and 4.3,
our conclusion is valid.

Case 6.Hexagons has six vertices on; or c,. It is not difficulty to see that has two
attachable edges which constitute an attachable conbination of

Now we complete our proof. O

In general case, a 3-resonant tubfilenay have chords of type I. L&t be a tubule
with maximal chords of type k3, e3, ..., ef. Itis clear thatl’ = Te)NT(e3)N---N
T (e}) is a pure tubule an@(e}) is a 3-resonant benzenoid system. Thus, we can give a
construction method of 3-resonant tubules based on 3-resonant benzenoid systems and
3-resonant pure tubules.

Now we give a construction method of 3-resonant pure tubule with at least two
chords. LetAg be the set of crown, hexagon afid(n = 2, 3, . ..) with attachable edges

forming an attachable combination.

Construction procedure.

(1) Benzenoid systerB, with attachable edges are defined recursively as follows.
Let us choose a benzenoid systéhwith attachable edges frory, and define
H to beB;. H is also defined to be the end sectionBJf_; with end section
and its attachable edges is defined, choogihpdrom Aq. B, can be obtained
from B,_; by identifying an attachable edge #f, and an attachable edge of
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(b)

Figure 12. Anillustration of the construction procedure (the last step (see (b)) is to idenéifday).

the end sectiorf,_1 of B,_1. We define the end sections Bf to be H; and
H, and attachable edges 8f, to be attachable edges &f, and H, lying on
the perimeter oB,,.

(2) If in B, there are two attachable edggande, belonging toH; and H,, re-
spectively, anck; ande, are parallel, when we identify; ande,, so that a
3-resonant pure tubule are obtained (see figure 12).

The following simple lemma can be found in [29].

Lemma9. Let 7,- (T, ) denote the hexagonal system obtained frirby deleting
one (two) attachable edge(s) together with its end verticesCld®note the crown, and
C~ (C~7) are obtained fronC by deleting one (two) edge(s) together with their end
vertices which form an attachable combinationcof Then?,, 7, ~, 7,,C,C~, C™~
arek(k > 3)-resonant.

Theorem 10. T is ak(k > 3)-resonant pure tubule with at least two chords of type II,
iff T can be produced by the constructing procedure.
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Proof. Let T be produced by the constructing procedure. THeis a pure tubule

with at least two chords of type Ik, es, ..., e, such that each sectiofi(e;, ¢;11),
i = 1,2,...,t (modr), is either aT,, or a crown, or a hexagon, which has ex-
actly two attachable edges and e¢;; constituting an attachable combination. Let
K = {s1, 52, ..., s¢} be a set of pairwise disjoint hexagonsTof K; = K N T'(e;, e;11),
i=12,...1.

For each sectiof (e¢;,e;11), i = 1,2,...,¢, if ¢; (e;11) belongs to a hexagon

in K not in the section, then delete end verticeg;ofe; 1). If ¢;11 does not belong to
any hexagon irK, then delete end vertices ef ;. The resultant graph is denoted by
T'(e;, ei41). Itis clear thatl’(e;, e;11) is either a7, (C) or a7, (C~) oral, —(C~ ),

or an edge or a 3-path, and any tW@(e;, e; 1) are disjoint, and_J T’ (e;, e;+1) covers
all vertices. By lemma 97" (e;, ¢;11) IS k(k > 3)-resonant. Henc&; are resonant in
theT’(e;, e;+1). ThusK is resonant irf” andT is k(k > 3)-resonant.

Conversly, if a pure tubulg” is k(k > 3)-resonant, therf" is 3-resonant. By
theorem 8, if we split a chord, we obtain a benzenoid system with the foByn and
the two edges obtained fromneed to be parallel. ThuE can be constructed by our
procedure. O

Theorem 11. A pure 3-resonant tubule must bé& > 3)-resonant.

Proof. If T has at least two chord; can be produced by the construction procedure.
ThusT fulfils the condition of theorem 10 ariis k(k > 3)-resonant. Now we need to
show that7, and7,’ (n > 4,n is even) are(k > 3)-resonant.

(1) Taking a seX of disjoint hexagons of,. If there is a hexagom, in K con-
taining exactly two vertices oa, or ¢, (see figure 6), then the graphs consisting of all
the hexagons of, — s is isomorphic to a7,_3. One can see that, these graphs are
k(k > 3)-resonant (see also [28]). ThusSis resonant ir7,. On the other hand, all
hexagons ofl’ having exactly four vertices ofy or ¢, are resonant. Thus, if all the
hexagons ik have exactly four vertices an or c,, they are also resonant. Therefore,
T, isk(k > 3)-resonant.

(2) Taking a set of disjoint hexagors of 7,'. If a hexagons; in K contains the
chord of 7, (see figure 6), then the graph consisting of all the hexagory' of s is
k(k > 3)-resonant (see also [28]). If there is a hexagoim K containing exactly two
vertices orry or ¢, then clearly the graph consisting of the all the hexagor¥g'ef s is
k(k > 3)-resonant (see also [28]). ThiiSis resonant irf,’. On the other hand, clearly
all hexagons off" having at least four vertices an or ¢, are resonant. Thus, if all the
hexagons ik have at least four vertices @ or ¢;, they are also resonant. Therefore
T — s1isk(k > 3)-resonant.

For the cases df 3, T4 andT's, we can check them straightforwardly. O

A parallel result in benzenoid systems is the following.

Theorem 12 [28]. A 3-resonant benzenoid system musklde > 3)-resonant.
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Figure 13. A Clar formula of a crown and twig's.

In general, we have

Theorem 13. Let T be a tubule with chord of type &;, e, . . ., e,, be maximal chords
oftype |. ThenT isk(k > 3)-resonant, iffB(e¢;),i = 1,2,...,m, is ak(k > 3)-resonant
benzenoid system aril = T(e)NT(ey N---NT(e,)is ak(k > 3)-resonant pure
tubule.

Proof. The proof is similar to that of theorem 10. We omit its detalils. a
By theorems 11-13, we have
Corollary 14. A 3-resonant tubule must ldgk > 3)-resonant.

Fork(k > 3)-resonant tubules, a trivial upper bound of Clar number/& where
n is the number of vertices of the tubule. This upper bound is reachéd(,ksince all
the hexagons df, with exactly four vertices on the perimeterBf form a Clar formula
of T, which hasz /6 hexagons. Similarly, the Clar number®f is [n/6].
The lower bound for the Clar number of th¢k > 3)-resonant tubules is/8,
wheren is the number of vertices of the tubules.
The fact is based on the following two observations and our construction procedure.

(1) For the crown and;,, we have a Clar formul& in which a set of attachable
combinations do not belong to any hexagorKir{see figure 13).

(2) Deleting all the sections isomorphic Ty and crown, we obtain some chains
of hexagons. Any centers of any three consecutive hexagons of the chain are
not on a straight line.

We can also check that the Clar numberTef, T4, T and A3 is 2, 2, 3 and 1,
respectively.
We omit the details of their proof.

5. Conclusion remark
In the experimental observation of carbon nanotubes, all the molcules have a large

size and two caps [1-10]. But how about the nanotube with small size? This paper
characterizes some open-ended tubules which are more stable from Clar’s point of view.
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For example,T, and7,” have the maximal Clar numberg6 and|n /6], respectively,
wheren is the number of carbon atoms. The tubulsand 7¢ have nice resonant
property. We think that the corresponding tubular hydrocarbons are good candidates for
synthesis, and the rolling up of multiple zigzag benzenoids or thin prolate rectanglar
benzenoids is an efficient way to theoretically construct them. Agfoand T3, since

the curvature is large, it may be difficult to synthesize them.
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